
1

8. June, 2021

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending
to help our customers increase the quality of their code while reducing
the high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

2

http://SolidProof.io

Overview

Network
Ethereum (ERC20)

Website
https://koji.earth

Telegram
https://t.me/kojiearth

Twitter
https://twitter.com/kojiearth

Facebook
https://facebook.com/thekojiearth

Github
https://github.com/nodezy/kojiearth

Reddit
https://www.reddit.com/r/kojiearth

3

https://koji.earth
https://t.me/kojiearth
https://twitter.com/kojiearth
https://facebook.com/thekojiearth
https://github.com/nodezy/kojiearth
https://www.reddit.com/r/kojiearth

Disclaimer	 2

Description	 5

Project Engagement	 5

Logo	 5

Contract Link	 5

Methodology	 7

Used Code from other Frameworks/Smart Contracts (direct imports)	 8

Source Lines	 9

Risk Level	 9

Capabilities	 9

CallGraph	 10

Source Units in Scope	 10

Critical issues	 11

High issues	 11

Medium issues	 11

Low issues	 11

Informational issues	 12

SWC Attacks	 13

4

Description
koji.earth is an ERC-20 project on the Ethereum network. A community
driven token, created to help those in need via mutual aid and donations
from 1% of each transaction, brought to earth by Koji, an alien with the
core mission of helping the earth in times of crisis by cooperating with
charitable organizations. In simple terms, KOJI is a hybrid digital token: a
DeFi Charity following a deflationary model with redistribution features
and regular NFT drops. They aim to cement their position as the leading
mutual-aid token by helping the world while offer best possible setting
for a great ROI. Deflationary and rewarding by design with 0.5% KOJI
burned + 1% redistribution back to all holders from each transaction made
including regular NFT drops. Speaking of the NFT drops; they recently
signed a deal with the professional comic & grapich novel company AmCo
Studios to produce the Koji Comics & The Kojiverse that will be used for
their exclusive and first-of-its kind NFT Comics.

Project Engagement
During the 6th of June, Koji Token Team engaged Solidproof.io to audit
smart contracts that they created. The engagement was technical in
nature and focused on identifying security flaws in the design and
implementation of the contracts. Koji Token Team provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Modified: From white to black (https://koji.earth/wp-core/wp-content/
themes/koji.earth/assets/imgs/koji-type.svg)

Contract Link
https://etherscan.io/address/
0x1c8266a4369af6d80df2659ba47b3c98f35cb8be#code

5

https://etherscan.io/address/0x1c8266a4369af6d80df2659ba47b3c98f35cb8be#code
https://etherscan.io/address/0x1c8266a4369af6d80df2659ba47b3c98f35cb8be#code

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology
The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:
i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Dependency / Import Path Count

@openzeppelin/contracts/GSN/Context.sol 1

@openzeppelin/contracts/access/Ownable.sol 1

@openzeppelin/contracts/math/SafeMath.sol 1

@openzeppelin/contracts/token/ERC20/IERC20.sol 1

@openzeppelin/contracts/utils/Address.sol 1

8

Metrics
Source Lines

Risk Level

Capabilities

Solidity
Versions
observed

🧪
Experiment
al Features

💰 Can
Receive
Funds

🖥 Uses
Assembly

💣 Has
Destroyable
Contracts

0.7.4 ****
(0 asm blocks)

9

CallGraph

Source Units in Scope

10

Audit Results

Critical issues
- no critical issues found -

High issues
- no hight issues found -

Medium issues
- no medium issues found -

Low issues

Meanings:

Lacks of Zero:
• There exists Zero address in solidity e.g. adress(0) or adress(0x0)
• In Solidity 0.5.0 comparing with integer 0 is not allowed anymore

Issue File Description Line

_charityAdress Main Lacks of Zero. 140: charityAddress =
_charityAddress

_adminAdress Main Lacks of Zero. 614: adminAddress
= _adminAddress

_burnAdress Main Lacks of Zero. 610: burnAddress =
_burnAddress

11

AUDIT PASSED

Informational issues
Issue File Description Line

#1 Main Used literals with too many digits 150:
excludeFromFees(address(0x0000000000
00000000000000000000000000dEaD));

#2 Main not in mixedCase 169: function balanceOf(address _account)
public view override returns (uint256) {

#3 Main not in mixedCase 181: function allowance(address _owner,
address _spender) public view override
returns (uint256) {

#4 Main not in mixedCase 185: function approve(address _spender,
uint256 _amount) public override returns
(bool) {

#5 Main not in mixedCase 211: function decreaseAllowance(address
_spender, uint256 _subtractedValue)
public virtual returns (bool) {

#6 Main not in mixedCase 475: function rewardsFromToken(uint256
_actualAmount, bool _deductTransferFee)
public view returns (uint256) {

12

SWC Attacks
ID Title Relationships Status

SWC-131 Presence of unused
variables

CWE-1164: Irrelevant
Code

PASSED

SWC-130
Right-To-Left-
Override control
character (U+202E)

CWE-451: User
Interface (UI)
Misrepresentation of
Critical Information

PASSED

SWC-129 Typographical Error CWE-480: Use of
Incorrect Operator

PASSED

SWC-128
DoS With Block Gas
Limit

CWE-400:
Uncontrolled
Resource
Consumption

PASSED

SWC-127
Arbitrary Jump with
Function Type
Variable

CWE-695: Use of
Low-Level
Functionality

PASSED

SWC-125 Incorrect Inheritance
Order

CWE-696: Incorrect
Behavior Order

PASSED

SWC-124 Write to Arbitrary
Storage Location

CWE-123: Write-what-
where Condition

PASSED

SWC-123
Requirement
Violation

CWE-573: Improper
Following of
Specification by
Caller

PASSED

SWC-122
Lack of Proper
Signature Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SWC-121
Missing Protection
against Signature
Replay Attacks

CWE-347: Improper
Verification of
Cryptographic
Signature

PASSED

13

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html

SWC-120
Weak Sources of
Randomness from
Chain Attributes

CWE-330: Use of
Insufficiently
Random Values

PASSED

SWC-119
Shadowing State
Variables

CWE-710: Improper
Adherence to Coding
Standards

PASSED

SWC-118 Incorrect Constructor
Name

CWE-665: Improper
Initialization

PASSED

SWC-117 Signature Malleability

CWE-347: Improper
Verification of
Cryptographic
Signature

PASSED

SWC-116
Timestamp
Dependence

CWE-829: Inclusion of
Functionality from
Untrusted Control
Sphere

PASSED

SWC-115 Authorization
through tx.origin

CWE-477: Use of
Obsolete Function

PASSED

SWC-114
Transaction Order
Dependence

CWE-362: Concurrent
Execution using
Shared Resource
with Improper
Synchronization
('Race Condition')

PASSED

SWC-113 DoS with Failed Call

CWE-703: Improper
Check or Handling of
Exceptional
Conditions

PASSED

SWC-112
Delegatecall to
Untrusted Callee

CWE-829: Inclusion of
Functionality from
Untrusted Control
Sphere

PASSED

SWC-111 Use of Deprecated
Solidity Functions

CWE-477: Use of
Obsolete Function

PASSED

14

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html

SWC-110 Assert Violation
CWE-670: Always-
Incorrect Control
Flow Implementation

PASSED

SWC-109 Uninitialized Storage
Pointer

CWE-824: Access of
Uninitialized Pointer

PASSED

SWC-108
State Variable Default
Visibility

CWE-710: Improper
Adherence to Coding
Standards

PASSED

SWC-107 Reentrancy
CWE-841: Improper
Enforcement of
Behavioral Workflow

PASSED

SWC-106
Unprotected
SELFDESTRUCT
Instruction

CWE-284: Improper
Access Control PASSED

SWC-105 Unprotected Ether
Withdrawal

CWE-284: Improper
Access Control

PASSED

SWC-104 Unchecked Call
Return Value

CWE-252: Unchecked
Return Value

PASSED

SWC-103 Floating Pragma
CWE-664: Improper
Control of a Resource
Through its Lifetime

PASSED

SWC-102
Outdated Compiler
Version

CWE-937: Using
Components with
Known
Vulnerabilities

PASSED

SWC-101 Integer Overflow and
Underflow

CWE-682: Incorrect
Calculation

PASSED

SWC-100
Function Default
Visibility

CWE-710: Improper
Adherence to Coding
Standards

PASSED

15

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

16

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Source Lines
	Risk Level
	Capabilities
	CallGraph
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	SWC Attacks

